
Theor Chem Account (2007) 118:733–738
DOI 10.1007/s00214-007-0345-z

REGULAR ARTICLE

On the application of the counterpoise correction for the basis
set superposition error in geometry optimization calculations
of molecular systems: some inconsistent results

C. Barrientos · J. A. Sordo

Received: 19 October 2006 / Accepted: 21 November 2006 / Published online: 12 June 2007
© Springer-Verlag 2007

Abstract It is shown that the conjecture that the total
energy for a given molecular or supermolecular system is
affected by basis set superposition error (BSSE) leads to
inconsistent results. While the calculations of interaction
energies, dissociation energies, or energy barriers depend on
the fragments (reactants, products) involved in their defini-
tions and, consequently, are affected by BSSE, the total ener-
gies of molecular or supermolecular systems do not depend
on any virtual fragment partition and are, therefore, BSSE
free.

1 Introduction

Szalewicz and Jeziorski [1] have stressed the important point
that the basis set superposition error (BSSE) is intimately
related to the concept of intermolecular interaction energy.
The interaction potential of two atoms A and B at a distance
R apart can be computed exactly from the definition

∆AB W (R) = WAB(R)−WA −WB (1)

where the total energy of the interacting system WAB and
the energies of the two separate atoms, WA and WB, are
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obtained from solutions of the appropriate Schrödinger equa-
tions (exact values). Roothaan’s algebraic approach [2]
allows us to estimate interaction energies as

∆ABE(R) = E[AB|α ∪ β](R)− E[A|α] − E[B|β] (2)

where E[AB|α∪β](R) represents the energy of the diatomic
molecule AB as computed with the α∪β basis set (α centred
at atom A and β centred at atom B) and E[A|α], E[B|β]
are the atomic energies of A and B as computed with basis
sets α and β, respectively. When unsaturated basis sets are
employed, the representation of the atomic systems A and
B is better in the molecular than in the atomic calculations
(α ∪ β is a more extended basis set than α or β). Boys and
Bernardi [3] proposed the so-called function counterpoise
procedure (CP) to estimate the interaction energy as

∆ABE(R)CP = E[AB|α ∪ β](R)− E[A|α ∪ β](R)

−E[B|α ∪ β](R) (3)

where E[A|α∪β](R) means the atomic energy of A as com-
puted using a two-centre basis set: α centred at atom A and
β centred at a point in space located at a distance R from
atom A. Now the three terms on the right-hand side of Eq. 3
are computed at the same level of accuracy (same basis set)
and it represents a consistent way of estimating interaction
energies provided α ∪ β is a well-balanced basis set for the
diatomic molecule AB [4,5]. Of course, basis set incomplete-
ness errors are still present in Eq. 3 as α∪β is not a complete
basis set.

The BSSE is defined as

BSSE(R) = ∆ABE(R)CP −∆ABE(R)

= E[A|α] − E[A|α ∪ β](R)+ E[B|β]
−E[B|α ∪ β](R) (4)
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As discussed elsewhere [6], if there are no geometrical varia-
tions when passing from the isolated systems, A and B, to
the corresponding subsystems A and B forming part of the
diatomic molecule AB, then BSSE can be readily computed
from Eq. 4. However, when A and B are not atoms, there
is always a change in their geometry as they interact with
each other to form a supermolecular system. Such changes
make E[A|α ∪ β](R) and E[B|α ∪ β](R) in Eq. 4 not well-
defined magnitudes. Indeed, in the case of E[A|α ∪ β](R),
for example, one should compute the energy of the isolated
monomer A using the extended basis set α ∪ β. However,
due to the changes in geometry of monomer B, the spatial
allocation of the β basis set becomes ambiguous. Emsley
et al. [7] circumvented this problem by proposing the follo-
wing expression to estimate BSSE:

BSSE(R) = E[A(AB)|α] − E[A(AB)|α ∪ β](R)

+E[B(AB)|β] − E[B(AB)|α ∪ β](R) (5)

where E[A(AB)|α ∪ β](R) represents the energy of the sub-
system A with identical geometry as in the supermolecule
AB, when computed with the α ∪ β basis set (β centred
on the positions of the atoms of subsystem B with identical
geometry as in the supermolecule AB).

Now, all terms on the right-hand side can be unambi-
guously computed.

The possible overcorrection commonly associated with
the CP algorithm when applied at the correlated level has
deserved much debate in the literature and it is not our present
aim to resume here the galaxy of articles analysing this aspect
during the past 20 years. The proof that even today a defi-
nitive conclusion has not been reached yet can be found in
the fact that in the latter issue of Chemical Reviews devoted
to weakly-bound systems [8], contradictory conclusions are
presented on the subject. While on p. 4231 Chalasinski and
Szczesniak [9] emphasize that overcompensation does not
take place, on p. 4150 Kim et al. [10] conclude that it is useful
to employ a 50% BSSE correction when comparing the theo-
retically evaluated quantities such as interaction energies,
enthalpies, and free energies with the experimentally deter-
mined ones. Theoretical arguments [11] as well as numerical
results [12] from our laboratory do support the latter view-
point. Indeed, it has been shown [11] that, when computing
the BSSE using the CP algorithm, there is a larger number of
charge-transfer excitations in the case of the monomer plus
ghost calculations than in the dimer calculation. Therefore,
the representation of each monomer at the correlated level
will be different in both cases. The orbitals of the mono-
mers are improved by the ghost basis (the so-called ghost
virtual orbitals) but at the expense of a non-physical increase
in the dimension of the virtual space, thus being excellent
candidates to account for the reported overcorrection when
applying the CP algorithm. Van Duijneveldt’s conclusion that

our concerns are “reminiscent of the (unfounded) arguments
leading to the virtual-only recipe” [13] represents a coarse
misinterpretation of our arguments [11]. Gutowski and Cha-
lasinski [14] tried to make an analysis of the contribution of
the ghost virtual orbitals for a particular case. However, their
analysis was oversimplified and general validity cannot be
claimed from it. As mentioned in [11], the problem is very
complicated. Indeed, we failed so far in finding some practi-
cal procedure to quantify all the ghost virtual contributions
in a general case.

On the other hand, in a series of numerical works from our
laboratory on weakly bound systems we systematically found
that the CP corrected interaction energies lie in between the
(BSSE-free) symmetry adapted perturbation theory (SAPT)
[15] estimates and the corresponding CP uncorrected values,
thus strongly suggesting that overcorrection must exist to
some extent [12].

As the difference between the application of the CP
method with and without inclusion of the ghost virtual orbi-
tals should become negligible as the basis set tends to be
saturated, the best option seems to be that proposed 20 years
before by Schwenke and Truhlar [16], namely, it is better
to increase the basis set to the maximum size affordable for
noncounterpoise corrected calculations.

More recently, Simon et al. [17] conjectured that not only
interaction energies but also total energies of any molecule or
supermolecular aggregate (molecular associations or transi-
tion structures), E(AB), should be affected by BSSE. Accor-
ding to these authors, the CP-corrected (super) molecular
energy should be written as

EAB(R)CP = E[AB|α ∪ β](R)+ BSSE(R) (6)

It should be stressed at this point that Eq. 6 cannot be derived
from Eq. 4. Equation 6 represents just a conjecture. As men-
tioned above, it has been emphasized that BSSE is intima-
tely related to the concept of intermolecular interactions [1].
Therefore, Eq. 6 should be considered with extreme caution.
Furthermore, it is possible to show that Eq. 6 is mathemati-
cally inconsistent. As the proof is more mathematical than
practical, we decided to incorporate it in the Appendix, in
order to avoid deflecting reader’s attention from the practical
impact of the conclusions reached in our study (see below).

A direct consequence of Eq. 6 is the fact that the geome-
try of any system (molecules, molecular associations, and
transition structures) is affected by BSSE. This result contra-
dicts the fact that the total energy of a given system, E(AB),
is variationally computed on the potential energy surface
(PES) by taking as the zero-energy reference that correspon-
ding to particles at rest infinitely far apart [18]. Such a zero
energy is common for all basis sets (basis set independent)
and consequently no BSSE operates [19,20]. It should be
stressed at this point that in sharp contrast with the situation
for total energies, the interaction energies are computed by
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taking as a reference, the energies of the interacting mono-
mers (see Eq. 2) which do depend on the basis set chosen,
thus giving rise to the BSSE originally analysed by Boys and
Bernardi [3].

In the next section, we will analyse different situations
where the CP-corrected geometry optimizations (i.e., appli-
cation of Eq. 6) give rise to inconsistent results. We try to
promote a reasonable debate to provide a balanced view on
the subject that deals with the evident drawbacks of the CP
algorithm. This might serve as a warning for researchers who
use as a black-box the codes that implemented this algorithm.
Our aim is not to write a review article on the results repor-
ted by researchers that used Eq. 6 but to present in a short
paper some disappointing conclusions about the unsuitabi-
lity of that equation. In this context, other alternative methods
to deal with BSSE like the chemical Hamiltonian approach
(CHA) introduced by Mayer [21] are not considered in the
present article.

2 Practical cases

In this section, we will illustrate the kind of problems arising
from the application of Eq. 6 by focusing on two paradig-
matic cases, representing rather common situations in com-
putational chemistry. The reader can extrapolate the present
results to a great variety of chemical processes.

We will compute and analyse the geometries of the two
chemically meaningful structures on a given PES: minima
and transition structures. The selected structures are involved
in two well-known chemical processes.

2.1 H− + CH3F→ CH4 + F− SN2 reaction

This reaction proceeds through the formation of two inter-
mediate complexes and one transition structure according to
[22],

H− + CH3F→ H− · · ·CH3 · · · F→ [(H · · ·CH3 · · ·F)−]‡
→ H · · ·CH3 · · ·F− → CH4 + F−

Let us focus on the transition structure [(H · · ·CH3 · · · F)−]‡.
The geometry optimization on the CP-corrected PES leads to
two different geometries depending on the fragment consi-
dered (either H− + CH3F or CH4 + F−) to compute BSSE
according to Eq. 6 (see Table 1 and Fig. 1). This is clearly
an unphysical result. Indeed, the solution of the Schrödin-
ger equation, within Roothaan’s approach, at a given level of
theory (Hartree–Fock, Moller–Plesset, configuration inter-
action, coupled cluster or density functional theory), and for
a given system ([(H · · ·CH3 · · · F)−]‡ in the present case),
depends on the basis set chosen but not on any virtual

Table 1 MP2/6-311+G(d,p) [MP2/aug-cc-pV5Z values in paren-
theses] geometrical parameters (distances in Angstroms and angles
in degrees; see Fig. 1), BSSE (kcal mol−1), and imaginary frequency
(cm−1) for the [(H· · ·CH3 · · ·F)−]‡ transition structure of the SN2 reac-
tion between H− and CH3F

TS TS′ TS′′

rC5–H1 1.927 (1.893) 1.929 1.979

rC5–F6 1.668 (1.672) 1.702 1.669

α(H1–C5–H2) 80.5 (81.2) 82.0 79.8

β(F6–C5–H2) 99.5 (98.8) 98.1 100.2

δ(H1–C5-H2–F6) 180.0 (180.0) 180.0 180.0

BSSE 13.8a 13.7

5.2b 5.2

Frequency 874.1 918.3 807.4

TS, TS′ y TS′′ stands for the [(H· · ·CH3 · · ·F)−]‡ single-point CP
calculation, CP-optimized PES results with respect to reactants
(H− + CH3F), and CP-optimized PES results with respect to products
(F− + CH4), respectively
a With respect to reactants (H− + CH3F)
b With respect to products (CH4 + F−)

Fig. 1 Geometries for the [(H · · ·CH3 · · ·F)−]‡ transition structure
and the Cl2O2 minimum structure considered in this work. Atoms
numbering is the one used in Tables 1 and 2

definition of monomer fragments in which the system could
be artificially partitioned.

The energy of the transition structure is variationally com-
puted with respect to the geometrical coordinates, taking as
a reference a given state with electrons at rest at an infinite
distance from the nuclei [18]. Energy equals zero for this
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reference state no matter the basis set chosen. Consequently,
no BSSE operates, and therefore the conjecture represented
by Eq. 6 is not acceptable as it leads to unphysical results.

Incidentally, from the analysis of the data in Table 1 one
concludes that the MP2 standard optimization (TS) leads, in
general, to better geometrical predictions than the MP2 CP-
corrected optimizations (TS′ and TS′′), taking as a reference
the MP2/aug-cc-pV5Z values which are expected to be close
to the BSSE-free MP2 limit [23–26].

Application of Eq. 6 to locate transition structures on the
PES led Kobko and Dannenberg [27] to conclude that the
BSSE will depend on the choice of fragments, just as it will
depend on the choice of a basis set. However, it should be
emphasized that while the basis set dependence is a hin-
drance forced by the approximations required to solve the
Schrödinger equation for the [(H · · ·CH3 · · · F)−]‡ transition
structure, the dependence on fragments choice is an artefact
arising from the adoption of the conjecture associated with
Eq. 6.

On the other hand, there are two energy barriers associated
with [(H · · ·CH3 · · · F)−]‡ transition structure, namely, the
one leading to reactants (H− + CH3F) and the one leading
to products (CH4+ F−). As the quality of the representation
of the corresponding fragments for a given basis set is not
the same whether isolated or when forming part of the tran-
sition structure, the BSSE should be considered via Eq. 5.
As expected, reactants and products energy barriers will not
be affected to the same extent by BSSE (see Table 1). This
situation has been analysed in detail by Lendvay and Mayer
[28] and by us [29]. Lendvay and Mayer recommended that
when one needs the energy of the reactants, transition struc-
tures, and products, it is better not to do any correction for
the BSSE. We concluded that the use of well-balanced basis
sets, without application of the CP method, leads to consistent
estimates of barrier heights whose accuracy directly depends
upon the quality (degree of completeness) of the basis set
employed.

The above arguments, of course, also apply to the cal-
culation of rotation barriers [19,20]. The energies of the
conformers and that of the transition structure associated with
the rotation must be computed without unnecessary artificial
consideration of virtual fragments. The unphysical applica-
tion of the CP procedure, as recommended by van Duijne-
veldt et al. [30], will necessarily lead to incorrect results.

Another interesting point refers to the computed vibra-
tional frequencies. From studies on hydrogen bonded com-
plexes, Hobza and Havlas [31] concluded that the use of
CP-corrected geometries leads to more appropriate estimates
of the blue-shift experimentally observed in this type of sys-
tems than when the standard optimizations are carried out.
Table 1 shows that the imaginary frequency for the
[(H · · ·CH3 · · · F)−]‡ transition structure increases when
computing the CP-corrected geometry with respect to

reactants (H− + CH3F) and decreases when using as a refe-
rence the products (CH4+F−). That means that for this parti-
cular case, the red or blue shifts arising from the CP-corrected
geometries are physically meaningless as they depend on the
fragments choice.

2.2 Thermal and photolytic decomposition of Cl2O2

Thermal (∆) and photolytic (hν) decomposition of Cl2O2,

Cl+ ClOO
hν←Cl2O2

∆→ClO+ ClO

are important processes forming part of the mechanisms,
controlling the stratospheric ozone layer [32].

As expected, the variational solution of the Schrödinger
equation (∂ECl2O2/∂pi = 0, with pi being the geometrical
coordinates) leads to a unique geometry for Cl2O2 for a given
basis set, no matter the pathway (thermal or photolytic) consi-
dered. The values for the most representative geometrical
parameters (see Fig. 1) are collected in Table 2.

Application of Eq. 6 implies the choice of fragments in
order to compute BSSE according to Eq. 5. Bearing in mind
the two possible pathways, the natural (although not unique)
choices are (a) Cl and ClOO (photolytic products) and (b)
ClO + ClO (thermal products). The corresponding geometry
optimizations on the CP-corrected PESs give rise, as in the
preceding case, to two different geometries for Cl2O2 (see
Table 2). This is an unacceptable result from the physical
viewpoint, arising from the conjecture that the total energy
of a molecular system depends on BSSE (Eq. 6). Indeed, no
definition of fragments is needed to solve the Schrödinger
equation for a given molecular structure. As mentioned in

Table 2 MP2/6-311+G(d,p) [MP2/aug-cc-pV5Z values in paren-
theses] geometrical parameters (distances in Angstroms and angles in
degrees; see Fig. 1) and BSSE (kcal mol−1) for the Cl2O2 minimum
structure (M) involved in the Cl + ClOO ← Cl2O2 → ClO + ClO
reactions

M M′ M′′

rCl1–O2 1.755 (1.696) 1.750 1.789

rCl4–O3 1.755 (1.696) 1.750 1.758

rO2–O3 1.381 (1.415) 1.415 1.372

α(Cl1–O2–O3) 110.4 (108.8) 109.8 110.7

β(Cl4–O3–O2) 110.4 (108.8) 109.8 110.8

δ(Cl1–O2–O3–Cl4) −84.4 (-81.1) −86.1 −85.5

BSSE 9.2a 8.8

6.5b 6.2

M, M′ and M′′ stand for Cl2O2 single-point CP calculation,
CP-optimized PES results with respect to thermal products (ClO +
ClO), and CP-optimized PES results with respect to the photolytic
products (Cl + ClOO), respectively
a With respect to the thermal products (ClO + ClO)
b With respect to the photolytic products (Cl + ClOO)
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the preceding section, only the theoretical method employed
as well as the basis set choice are required. The analysis
of the quality (taking again as a reference the MP2/aug-cc-
pV5Z values) of the geometrical parameters obtained by the
different optimization methods (see Table 2) suggests that
the CP-optimized geometry M′, with respect to the thermal
products (ClO + ClO) represents, in general, a notable impro-
vement on the standard optimized geometry (M). However,
the CP-optimized geometry (M′′) with respect to the pro-
tolytic products (Cl + ClOO) systematically leads to worse
predictions. Therefore, no general conclusion can be reached
about the comparative performances of the standard and CP-
corrected PES optimizations in the present case.

Regarding dissociation energies of Cl2O2, we need to esta-
blish the dissociation process to be considered. Thus, we can
compute the dissociation energies of Cl2O2 for the thermal
(ClO + ClO) or photolytic (Cl + O) decompositions. By defi-
nition, dissociation energies depend on the energies of the
dissociation fragments, BSSE operates, and Eq. 5 should be
used to estimate them. As expected, Table 2 shows that the
two possible dissociation energies are differently affected by
BSSE.

3 Conclusion

The results presented in this work strongly suggest that the
standard single-point CP algorithm works, in general [11,19,
20], properly, rendering consistent estimates of the stabiliza-
tion energies ∆ABE(R)CP, and it is more appropriate than
that based on the constructions of the so-called CP-corrected
PESs, unless we were ready to accept the suitability of an
algorithm, based on a conjecture (Eq. 6), that predicts two
different geometries for a given structure on the same PES.

As originally proposed by Boys and Bernardi [3], and later
emphasized by Szalewicz and Jeziorski [1], the CP algo-
rithm should be used to correct interaction energies. It can
be safely extended to the computation of dissociation ener-
gies or energy barriers, as all of these calculations involve the
simultaneous estimate of the energy for molecular or super-
molecular systems and its constitutive fragments (reactant or
products).

The variational optimizations of the geometry of mole-
cular or supermolecular systems involve the calculation of
the total energy which does not depend on any particular
fragment partition, as its value is referred to a state defined
by electrons at rest at an infinite distance from the nuclei. By
definition, the energy of such a state is zero no matter the basis
set employed in the calculations. Therefore, BSSE does not
operate, and the conjecture represented by Eq. 6 is incorrect.
It must be stressed that the consideration of different stra-
tegies based on the choice of “appropriate” fragments [33]
cannot solve the kind of problems reported in this work.

The unnecessary and consequently artificial incorporation
of the BSSE through Eq. 6, which involves the artificial defi-
nition of fragments, violates the ancient rule of economy that
plurality should not be assumed without necessity (“non sunt
multiplicanda entia praeter necessitatem” (Ockham’s razor)),
thus bringing about unwanted consequences.
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Appendix

In this Appendix, we will proof a theorem showing the artifi-
cial extension of the BSSE concept through Eq. 6 could give
rise to inconsistent results. The proof proceeds by reductio
ad absurdum.

Let ω be an unsaturated basis set centred at A and C,
a uniformly complete basis set for the diatomic molecule
AB constructed, according to Kutzelnigg’s recipe [34], from
complete basis sets A (centred at A) and B (centred at B)
for atoms A and B, respectively. Let us represent A by C
and B by ω. By definition, ω ∪ C must provide the exact
values for (a) the total energy of the diatomic molecule, i.e.,
E[AB|ω ∪ C] = WAB, as well as its exact (opt) geometry,
i.e., R = Ropt, and (b) the total energies of atoms A, B,
i.e., E[A|ω ∪ C] = WA;E[B|ω ∪ C] = WB. However, the
stabilization energy [1] estimated by means of Eq. 2 (using
C for A and ω for B), ∆AB E(Ropt), will differ from the exact
value, ∆ABW (Ropt), because ω is not a complete basis set
for B (E[B|ω] �= WB). According to Boys and Bernardi [3],
if we want to improve such an estimate we should use the CP
correction (Eq. 3)

∆ABE(Ropt)
CP = E[AB|ω ∪ C](Ropt)− E[A|ω ∪ C](Ropt)

−E[B|ω ∪ C](Ropt)

= ∆ABW(Ropt)(exact value) (A1)

On the other hand, if Eq. 6 were correct

EAB(Ropt)
CP = E[AB|ω ∪ C](Ropt)+ BSSE(Ropt) (A2)

and BSSE(Ropt) should vanish since E[AB|ω ∪ C](Ropt) =
WAB(Ropt) (exact value). However, Eq. 4 applied to the
present case

BSSE(Ropt) = E[A|C](Ropt)− E[A|ω ∪ C](Ropt)

+E[B|ω](Ropt)− E[B|ω ∪ C](Ropt) (A3)

shows that BSSE(Ropt) �= 0. Indeed, E[B|ω](Ropt)−E[B|ω∪
C](Ropt) is different from zero and positive as a consequence
of the fact that ω is an unsaturated basis set while ω ∪ C
is a complete basis set for B. On the other hand, BSSE(R)
�= constant because as R varies E[B|ω](R) will gradually
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change (ω is centred at A). Consequently, on the BSSE-CP
corrected potential energy surface constructed using Eq. 6
[17], we will obtain a new distance, RCP, different from the
exact value (Ropt) which is in clear contradiction with the
fact that the basis set used in the calculations, ω ∪ C, is by
definition a uniformly complete basis set for AB. Therefore,
Eq. 6 has no general validity.
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